Django Template Test Database

Documentation
Release 1.0.1

Django Template Test Database developers and contributors

April 02, 2014

Contents

Django Template Test Database Documentation, Release 1.0.1

Contents

* Django Template Test Database
— Overview
Best Practice
Dependencies
Installation
Usage
Integration with other test runners
Integration with South

Contents 1

Django Template Test Database Documentation, Release 1.0.1

2 Contents

CHAPTER 1

Overview

Django template test database is a testing tool for django that provides an alternative to fixtures when tools like
FactoryBoy aren’t suitable. The use case is simple: for integration tests that require the test database to be populated
with a specific (large) set of test data before they will even run. Loading this test data using fixtures would be very

slow. This problem is solved by loading the test data during database creation at the database level and allows us to
avoid all of the overhead by loading data through django.

Django Template Test Database Documentation, Release 1.0.1

4 Chapter 1. Overview

CHAPTER 2

Best Practice

If your test data is large enough to make use of django-ttdb then I recommend using a minimum of two databases
for testing. First use a sqlite database for all simple unit tests that do not require special database features (postgres).
Using a sqlite db for testing in django runs in memory and is fast. Second define a postgres test database for integration
tests which need a specific set of data to test against.

Django Template Test Database Documentation, Release 1.0.1

6 Chapter 2. Best Practice

CHAPTER 3

Dependencies

Django 1.4 and above
mock

postgresql

psycopg2

Django Template Test Database Documentation, Release 1.0.1

8 Chapter 3. Dependencies

CHAPTER 4

Installation

To use django-ttdb you must first install it using your preferred method:

$ pip install django-ttdb

To use django-ttdb you must use the test runner included with ttdb. In your settings file you can tell it to use the
django-ttdb runner.:

TEST_RUNNER = ’'ttdb.runner.TemplateDatabaseRunner’

Django Template Test Database Documentation, Release 1.0.1

10 Chapter 4. Installation

CHAPTER 5

Usage

Then you have to define a postgres template database for testing in your settings file. You’ll most likely want to define
a different set of DATABASES for testing than development/production:

If running the tests use two databases. The default is an in memory sqglite database
for running unit tests (speed). A second test database created called test_django_ttdb
is created as an exact copy of the django_ttdb db. This database is not used unless
You explicitly tell the TestCase to use this database.
if ’"test’ in sys.argv:
DATABASES = {

"default’: {

"ENGINE’ : "django.db.backends.sglite3’,

HH= R W H

}V
"development’ : {
"ENGINE’ : "django.db.backends.postgresqgl_psycopg2’,
"NAME’ : ’django_ttdb’,
"USER’ : ’'postgres’,
"HOST’: 7127.0.0.17",
"TEST_TEMPLATE’ : True,

}
else:
DATABASES = {
"default’: {

"ENGINE’ : "django.db.backends.postgresql_psycopg2’,
"NAME’ : "django_ttdb’,
"USER’ : ’"postgres’,
"HOST’: "127.0.0.1",

Note: The above example uses a simple check if fest is in the argv to change the database configuration for running
tests. It is recommended that you create a seperate settings file for running tests.

Now we can use the template test database in our tests. There are a few ways to do this but the easiest way is using a
decorator:

from ttdb import use_template_database
from django.test import TestCase

Quse_template_database (' development’)
class TestClassDecorator (TestCase) :
def test_class_decorator (pass):

11

Django Template Test Database Documentation, Release 1.0.1

"""All tests inside class will use postgres template database."""
pass

class TestDecorator (TestCase) :
Quse_template_database (' development’)
def test_decorator(self):
"""Ts running tests using the postgres template database."""
pass

We can also use the TemplateDBTestCase class:

from ttdb import TemplateDBTestCase

class TestClass (TemplateDBTestCase) :
template_database = "development’

def test_class(self):
"""Define the template_database and use inheritance rather than decorator."""
pass

Note: Because the TestCase class patches the transaction management code when the test has completed the database
is rolled back to it’s original state. This means that we don’t need to do anything special to preserve the test data

between tests.

It also supports the TransactionTestCase. However because of the way that the TransactionTestCase works we have
to customize the test case to not flush the database after every test to make sure that the data remains in the database.
Instead of flushing the database after each test django-ttdb takes a different approach. It drops the database and creates
it after each test:

from ttdb import TemplateDBTransactionTestCase
from ttdb import use_template_database
from django.test import TransactionTestCase

@Quse_template_database (' development’)
class TestTransactions (TransactionTestCase) :
def test_transaction(self):
"""After running the template test db will be droped and created."""
pass

class TestTransactionTwo (TemplateDBTransactionTestCase) :
def test_transaction(self):
pass

This behaviour will sometimes be undesirable, for example if the test case will clean up after it’s self. In these cases
we can tell django-ttdb to not drop and create the database after each test:

from ttdb import TemplateDBTransactionTestCase
from ttdb import use_template_database
from django.test import TransactionTestCase

Quse_template_database (' development’, reload_after_test=False)
class TestTransactions (TransactionTestCase) :
def test_transaction(self):
"""Database will remain upon test completion."""
pass

class TestTransactionTwo (TemplateDBTransactionTestCase) :
template_database = "development’

12 Chapter 5. Usage

Django Template Test Database Documentation, Release 1.0.1

reload_after_test = False

def test_transaction(self):
pass

We also support the LiveServerTestCase. This is slightly different again. Because the LiveServerTestCase starts a
django server running in a seperate thread we need to patch the database before the thread starts. To do this the
database is patched in the setUpClass method and remains patched until all of the tests in the LiveServerTestCase have
run. That means that unlike the TestCase and TransactionTestCase the template db will not be droped and created after
each test, rather at the creation and destruction of the test class:

from django.test import LiveServerTestCase
from ttdb import use_template_database
from ttdb import TemplateDBLiveServerTestCase

Quse_template_database (' development’)
class TestLiveServer (LiveServerTestCase) :
def test_one(self):
"""Database not destroyed after."""
pass

def test_two(self):
"""Database destroyed after last test in class run."""
pass

class TestLiveServer (TemplateDBLiveServerTestCase) :
template_database = "development’

def test_one(self):
"""Database not destroyed after."""
pass

def test_two(self):
"""Database destroyed after last test in class run."""
pass

Finally, the use_template_database decorator also works with the with statement:

from django.test import TestCase

class Test (TestCase) :
def test_with(self):
"""Test as with statement."""
with use_template_database (' development’, reload_after_test=False):
Test against development database
pass
Test against default sqlite database

13

Django Template Test Database Documentation, Release 1.0.1

14 Chapter 5. Usage

CHAPTER 6

Integration with other test runners

django-ttdb should play nice with other test runners. One way to integrate it is by creating a test runner that subclasses
other test runners:

from ttdb.runner import TemplateDatabaseRunner
from discover_runner import DiscoverRunner
from other runner import OtherRunner

class MyTestRunner (DiscoverRunner, OtherRunner, TemplateDatabaseRunner) :
option_list = OtherRunner.option_list + DiscoverRunner.option_list

Then in your settings file:

TEST_RUNNER = ’'path.to.MyTestRunner’

15

Django Template Test Database Documentation, Release 1.0.1

16 Chapter 6. Integration with other test runners

CHAPTER 7

Integration with South

Make sure you turn off SOUTH_TESTS_MIGRATE. It’s not needed because you're creating your test database as a
copy of your development (or other) database:

SOUTH_TESTS_MIGRATE = False

17

